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ABSTRACT, The dynamics and control of a tendon driven three degree of freedom shoulder joint are
studied. A control scheme consisting of two phases has been developed. In the first phase, approximation of
the time optimal control trajectory was applied open loop to the system. {n the second phase a closed loop
lincar feedback law was employed to bring the system to the desired final state and to maintain it there.
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Chapter 1. Introduction

1.1 Problem Descriptrion

This thesis deals with the time-optimal control of a tendon arm system. The tendon arm system
consists of a rigid link attached o a base plate through a three degree-of-freedom joint thus affording the
arni rotational freedom in three axes Movement of the arm is madce possible bty four tendons: one end
of cach tendon is attached w the tog. of the arm and the other end is wound on a motor shalt focated
under the base plate. The design of the tendon attachments is such that through the interaction of the
four motors and tendons, and by controlling the current input (or torgue autput: of the motors, control of
the movement of the arm in three axcs is possible. Section 2.1 contains a more detailed dexcription of the
tendon arm system, and figure 2-1 shows a schematic diagram of it. The tendon arm system is designed by
John Hollerbach and Danny Hillis of the M.LT. Artificial Intelligence laboratory.

We arc interested in designing a controller to move the arm from an initial position to any specified
final position. Time-optimal control is choscn because
1. it achieves the desired motion in minimum time — this is desirable because the faster it can move, the

more motion tasks per unit time could be completed this way, and
2. it requires few words of computer memory to represent the optimal solution — traditionally, time-

optimal solution is associated with bang-bang control, hence the optimal solution is completely
specificd by the switching times.
These are the molivatioﬁs for choosing time-optimal control, namely, it yiclds a rapid-moving system
which is implementable.

The second point mentioned in the last paragraph is only valid if the problem is nonsingular. In

the presence of singularity, the time-optimal solution need not be bang-bang. Our problem is, in fact,

singular, but the form of the singular arcs is such that the control signals can be approximaied very closely




by straight line scgments. hence the storage requirements for such a control is quite low also (about §
integer words per trajectory).

Since our system cquations arc highly nonlincar and complicated, it is not possible to express the
optimal solution in feedback form. Thus, in addition to this open-loop control, some sort of closed-loop
control law is required to correct for any disturbances. ‘The overall control scaeme will consist of two
phascs : an initial phase during which open-loop time-optimal control is app'ied. and a sccond phase
which is fecdback regulation at the final position.

Although time-optimal control has been applicd to manipulators (Kahn[1]), it does not shed much
light on our problem because the tendon arm is different from conventional manipulator design. The only
reference that is available on tendon arm dynamics is Riemenschneider et al [2] but the paper deals with a

onc degrec-of-freedom arm which is much siipler than the three degree-of- freedom arm studied herein.

1.2 Thesis Outline

This thesis is organized into seven Chapters:

Chapter 1 provides an introduction to the problem under study.

Chapter 2 describes the physical tendon arm system and develops a mathematical model describing the
system. A simplified reduced-order model is also obtained, and the responses of the two are com-
pared.

Chapter 3 first states the time-optimal control problem and presents necessary conditions for the optimal
solution from Pontryagin’s Minimum Principle. These are then applied to the reduced-order tnodel
of the tendon arm system.

Chapter 4 presents the conjugate gradient method and describes an iterative procedure for solving our
time-optimal problem. Approximation for the time-optimal solution is also proposed.

Chapter 5 motivates the need for a closed-loop feedback control law at the final position, and presents the

lincar regulator approach for designing the feedback law,




Chapter 6 describes the implementation of the overall control scheme,

Chapter 7 is a summary of the results of the thesis and describes areas of further work.




Chapter 2. Modcling of the Tendon Arm System

In order to study and develop a zontrol straicgy for the tendon arm system, we must have a mathe-
matical model of it. In this Chapter, the physical system is first described, equations describing the system
dynamics arc then developed, and a reduced-order model is obtained by ignoring the third degree-of-

freedom of the arm.

A A Description of the Tendon Arm System

The schematic diagram of the tendon arm system is shown in figure 2-1. It is a cylindrical rod, known

as the arm, attached at one end to a vasc plate via a three degree-of-freedom "joint”. Figure 2-2 shows |

the "joint"” in greater detail. The outcr rectangular block, together with the inner member, can be rotated
about the Y — Y axis. The inner member can be independently rotated about the X' — X axis. The
cylindrical part of the inncr member can be rotated about the Z — Z axis, .e. the Jongitudinal axis of the
cylinder. Potentiometers are mounted as shown in the diagram to measure the three angles of rotation.
This construction of the “joint” lends itself to a very natural way of defining the position of the arm
in terms of the three angles 6, ¢, and ¢, which are measured directly by the potentiometers, as shown
in figurc 2-3. This coordinate system will be used throughout this thesis to describe the arm. Another
coordinate system, described by the angles a, 8, and v, is sometimes used. This is shown in figure 2-4.

At the upper half of the cylindrical rod, there arc points of "insertion™ (attachmenc) for four tendons,
two at onc height, and the other two at another. Each tendon is wrapped around the arm through a certain
angle before it breaks off from the surface of the arm (see figure 2-5). The other end of the tendon passes
through a pulley on the basc platc and is wrapped round a threaded cylinder mounted on the shaft of a
motor under the base plate. As the motor rotates, the tendon will be wrapped or unwrapped from the
motor shaft thereby causing a shortening or lengthening of the tendon between the motor and the arm.

Through the interaction of the four motors and tendons, the arm can be moved from one position (0
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Figure 2-1. Schematic diagram of the tendon arm system

another,
12  Equations of Motion
221 Coordinate Systems and Coordinate Transformation

We choosc as our fixed coordinate system onc that has its origin at the "joint” with the z-axis along




Figure 2-2. A more detailed diagram of the three degree-of-freedom “joint”

P;3, Py and the y-axis along P2, Py. Py, Py, P3, and P, arc the points on the base plate through which the
tendons pass (refer to figure 2-5).

In computing the dynamics of the arm, we refer all quantitics to a moving coordinate system which
is fixed to the anm and with the three axes coinciding with those of the fixed coordinate system when

0 = ¢ = ¢ = 0. These three axces are the principal axes of the arm.
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Figure 2-3. Angles defining the position of the  Figure 2-d.  Another set of angles that defines
arm the position of the arm

If P denotes the coordinates of a point in the fixed coordinate system, to refer it to the moving
coordinate system, we need to perform the following transformations:
1. arotation through an angle ¢ about the y-axis, and
2. arotation through an angle 8 about the new z-axis, and

3. arotation through an angle ¢ about the new z-axis.

i.e.

P' = 5(v)5:(0) S,(¢) P (2.1)

where P denotes the coordinates of the point referred to the moving (primed) coordinate system, and

i

f:
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Figure 2-5. Schematic diagram of thc arm showing the tendon wrapping geometry.
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|1 0 0 cos¢ 0 —sing cosy siny 0
S0) =10 cosd sind|, Sy¢)=| 0 1 0 |, S(¢)=|—siny cosy 0
0 —sind cosd sing 0 cos¢ 0 0 1
(22)
or
P = W(0,¢,¢) P (2.3)
where

cos@cost) + sinfsingsiny  cosfsiny —singcosy + sinfcosgpsiny
W(0,¢,¢%) =|—cospsiny +sinfsingcosy cosfcosy singsiny + sinfcos¢cosy

cosfsin ¢ —sinfd cosfcos¢
(2.4)

2.2.2 Some Geometric Calculations

Referring to figure 2-6 which shows some parameters of the arm,

0 0 —8 8
Py =lal, Py =|—a], Py=]0], Py=10]. (2.5)
0 0 0 0
Using equation (2.3),
acosfsiny —a8cosPcosyy —ssinfdsingdsiny
Py = —P),=|acosfcosy|, Py =—P,=] scos¢siny —ssinfsingcosy |. (2.6)
—asinf —scosfsing

From now onwards, we will refer all quantitics to the moving coordinate system.
Let @; be the point at which tendon ¢ is attached to the arm, and R, be the point at which tendon ¢ leaves
the surface of the arm. Then in order to calculate the directions in which the tendons pull on the arm, we

need the coordinates of the R,'s.

it i S ottt et i nntesttnasacnteel]



Figure 2-6. Schemalic diagram showing some parameters of the arm.

Coordinates of Ry and Ry ;

Let (23, 1. ) denote the coordinates of Ry with respect to the primed coordinate system.

From figure 2-7(a) and cquation (2.6),
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Figure 2-7. (a) Schematic of the arm looking down the z-axis showing only tendon 1. (b)
Unwrapping tendon 1 onto a plane.

_ —1f acoslsingp)
w = tan l(acos&cos w) =v @7)

— con—![ -2 !
A\ = cos (acow) (2.8) .

where p is the radius of the cylindrical arm.

7, = +psin(x — A —w) = psin(w 4 N) (2.9)
y1 = —pecos(x — N — w) = pcos(w 4 N) (2.10)

Referring to figure 2-7(b),
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MR, _ QM
RNy NP
implics
23 = —asinf 4 b+ asind

I+ (% ~w—A)/tanA
4
Ly =R\P, = ((zl + asin8)? + p?tan? )\]

)
h=@P = [(b+08i"0)2 -}-1’2(:-{-:-r —w—A\ +tan))2]

Similarly, the coordinates of R; arc given by,

7y = —psin(w + N)
tr = —pcos(w + A)

2 = asind + b—asind

14+ (¥ —w—N\)/tanh

4
Ly = RyP; = ((zz — asind)? + p*tan® )‘]

i
b =@QP,= [(b—— asinf)? +p2(§£ ~w—\+4tan )\)’]

Coordinates of R3 and R4

Let (z3, 413, 23) be the coordinates of R3 in the primed coordinates.

From figure 2-8(a) and equation(2.6),

, —f —cosdsiny - sinfsingcosy)
W= tan ( cospcosyy + sinfsin g sin ¢ )
_ tan._,(——tanw-l--tanq&sino
n 1+ tanYtan gsind

Define

tanyu’ = tan ¢sind

(2.11)
(2.12)

(2.13)

(2.14)
(2.15)

(2.16)

@2.17)

(2.18)

(2.19)

(2.20)

— -
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Figure 2-8. (a) Schematic of the arm looking down the z-axis showing only tendon 3. (b)
Unwrapping tendon 3 onto a plane.
Then from cquations (2.19) and (2.20),
- W= —y : (2.23)
)\I= oa—l 4 222
;* § (a(cos"’d: + 8in? ¢ sin? 0)*) (2.22)
{ z3 = —pcos{w' + \) (2.23)
- = —psin{w’ 4 \) (2.24)
Referring to figure 2-8(b),
o~




14

MR, _ M@,
RNy NPy
implics
e t + ssinpcosld
. 33 = —ssindcosh + l+(-'f—w’-—k’)/tank' (2.25)
}
L;=R)P, = [(z, + ssin ¢ cosd)? + p*tan? k'] (2.26)
)
L=QP = [(c + rsin @ cos )’ + p¥( 37' — ' — N + tan x')’] (2.27)
Similarly, for R4,
z3 = pcos{w + N) (2 28)
Y4 = psin(w’ + N) (2 29) ‘
- t — ssingcosd _
z4 = ssingpcosd + TF(F —w — V)W (2.30) ¢
L]
Ly=RPy = [(24 — ssin ¢ cosd)’ + p’tan? k’] (2.31)
¢
ly=Q4Ps = [(t — ssin ¢ cosd)? + p’(aT' —w — N +4tan k')’] (2.32)

Coordinates of the center of gravity

Let G be the center of gravity of the arm (see figure 2-6), and let GD be the unit vector along the 1
dircction of the gravitation ficld which will be assumed to be vertically down.

Expressed in the primed coordinate system,

[0
G={0 (2.33)
d
( sindcosyy) — sinfcosdsiny ;*
GD = | —sin¢siny — sinfcosdcos ¢ (2.34) ‘
| —cos@cos¢ l

223 Resultant Torque exerted by the four Tendons about the point of rotation O

S _ )
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letF,.t =1, .., 4, bethe tension in tendon ¢, the direction of F, will be i the direction of R, P,.

Resultant torque acting on the arm about O

—-()R| XF +0R1XF;+OR;XPJ+OR1)(P4+OCXYRQ

F
O, x R I’ OR, x R,P OR; x RyP
|RIPI| i P+ iR Pz| 2 Fr+ lRJPj' 3 3P

Fy . . .
- OR\ X 4P+ m x GD
+ IR.Pdl 1 1Py + mgOG

=T\ + jTs + kT (2.35)

where

T = ?[—pasinﬂcos(w 4+ \) —zaco8fcus y| + g[—msinocos(w + N) + zaco86 cos ¢
(
+ ?[pa sin ¢ cos @ sin(w’ + N') — z38(cos @ sin ¥ — sin @ sin ¢ cos )] ;
3

+ {f [pa sin ¢ cos @ sin(w’ + N') + z;8(cos P siny — sinBsin ¢ cos 1/:)]
4
+ mgd(sin ¢ sin Y + cos @ sind cos ) (2.36)
T, = :—}[pasinﬂsin(w + N + 2@ cosfsin ¢ + g[pasin #sin{w + A} — zacosfsin ¢)
1

+ ?[--ps sin ¢ cosd cos(w’ + N') — z;8(cos @ cos ¥ + sin ¢sin@ sin dz)]
3

+ ?[—pc sin ¢ cosf cos(w’ + N') + z48(cos P cos ¢ + sing sinésin w)]
4

+ myd(sin ¢ cosyy — cos psindsin ¢) (2.37)
T = ({—: + Z—:)pa cosdain \ + (g + E)pa[linduinﬂcoa()\’ + u') — cos g sin(N + u’)] (2.38) f

Note: The expressions in equations (2.36)«2.38) arc derived based on the gcometry of the arm as
described in section 2.2.2, which assumes that al} the tendons arc wrapped properly on the arm. In the
course of moving from onc position to another. onc pair of the tendons might be completely unwrapped,

hence the expressions developed above will not be valid.

Referring to the notations used in section 2.2.2:
ifw 4 N > 3x/4, then tendons 1 and 2 have completely unwrapped, and

ifuw’ 4+ N > 3x/4, then tendons 3 and 4 have completely unwrapped.

, )
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Appendix A develops the corresponding expressions for equations (2.36)~(2.38) in the cvent of either pair

of tendons is unwrapped. These expressions are only approximations as the tendon insertion is not ideal.

224 Arm and Motor Dynamics

Fuler's dynamical equations for the rotation of a rigid body about a point O are given by,

Jy ‘id% — (=AM =T
dQ

J,_—d—t? — (=000 =T (2.39)
dn

J’“aTB — (=R =T;

where the subscripts 1, 2, 3 refer to the three principal axes of the rigid body, €2,, J; arc the angular
vclocity and the moment of incertia, respectively, of the arm along the t-axis, and T is the external
applicd torquc on the body.
By making the identification of the -, /-, # -axes of the arm primed coordinate system with the
1-, 2-, 3-axcs of the above, we can apply equation (2.39) to the tendon arm system, with the simplifying
assumption that

h=h=J (2.40)

This assumption is valid because the contribution of the moment of inertia of the lower rectangular block
about point O, which is asymmetrical about the Z-axis, is negligible compared to that of the cylindrical
rod. which is symmctrical.

Expressing the £1,'s in tcrms of the three angles 8, ¢ and 1, we obtain,

nl Ocosy + $cosdsiny
=0y =|—0siny + ¢cosdconsy (2.41)
{1 —¢sind + ¢

Ty. T,. T; are given by cquations (2.36)+2.38). The tensions Fy, Fy, F3, Fy in the tendons are related
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to the input currents to the motors, Iy, L, I;, I, through the motor dynamics
Jmﬁi+Bnl'7.i+Fi'=KIi 1=1,...,4 (242)

where

;i the angular velocity of the motor shaft,
Jm is the moment of inertia of the motor shaft,
B,, is the velocity dependent friction coefficient,
T isthe radius of the cylinder mounted on the motor shaft, and
K s the torque constant of the motor.
Because of the constraint that the tendons must be taut at all time, and the assumption that the
tendons are inelastic, the angular rotation of each motor is related to that of the arm.
Specifically,
ry =k — (0,4, 9) (2.43)

where [,(8, ¢, ¥) is the length of tendon ¢ (from point @, to point P,) when the arm is at the position
defined by 8, ¢, ¥. and |y = 1;(0, 0, 0), which implics thaty, = O whenf = ¢ = ¢ = 0.

By differentiating equation (2.43) with respect to time once, we obtain
S L. P, O
ry = [099 + 0¢¢+o¢¢] (2.44)

By differentiating once more,

A, 5 &

AU,
a¢2 ¢’ + oy

ri = — [ +a¢¢+o¢w+ 0+ o iV’

(2.45)

MBog | Gy X

By substituting equations (2.44)(2.45) into cquation (2.42), we can obtain expressions for the Fi's in

+28% g5 4 2. B Gy 4 2 O woJ

terris of the I;'s and the three angles 0, ¢, and ¢. By substituting these into cquations (2.36)2.39), a set

of differential equations describing the dynimics of the tendon arm system is obtained.

'

'
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By defining,
z=10 ¢ v 6 ¢ ¥ (2.46)
u = U] 12 13 I4]T (2.47)
and rcarranging terms, we obtain the equations of motion of the system in the form,
£(t) = Fo(=(t)) + B(z(t))ult) (2.48)

where

Fo(z) isaB-vector, and

By(z) isa8 X 4 matrix.

The full detail of equation (2.48) is given in Appendix B.

23  Reduced-Order Model

The equations of motion obtained in the previous section is too complicated to be uscful in the
design of a controller. Much of the complications arises from the geometry of the tcndon amm system.

A simplified fourth order modcl is obtained by ignoring the tendon wrapping about the arm, thereby
reducing the three degree-of-freedom arm to a two degree-of-frecdom one. This is achieved by equating p
to zero (recall that p is the radius of the cylindrical arm).

e,

p=0 (2.49)

This, in effect, is to ignore the twisting movement, ¢, of the arm.

Equations (2.39) become:
J(0 + ¢*sinfcosd) = (E’ - !;l—')a.bcoso - (f—:‘ - %)sl sinfsing + mgdsindcosp (2.50)
J(@cooa — Wesind) = (l{—‘ — ?)at cos ¢ + mod sin¢ (2.51)
4 3
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where
- I = [a + b? + 2absind)}
Iy = [a® + b? — 2absind]?
Iy = (82 4+ t2 4 2st sin ¢ cosf)?
Iy = [8% 4 t? — 2stsin ¢ cosd]?
From equations (2.42)(2.45),
”~
1 I A, &4 B,
F:=-|KL pact —50? ? 4214 (e o
R r[ +r( +6¢¢+ +6¢2¢+ ¢¢)F F¢¢
- Fort = 1, 2, since l; is a function of @ only,
_ My o Imfdliy dip) | Bk
F‘“?[KH' r( a0’ T a2’ )+ do}

Substituting equations (2.53)(2.54) into (2.50)«2.51), and rearranging terms,

(2.52)

)J (2.59)

(2.54)
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” ld_ll l(ﬂ stsin¢sind lc9l3 184,
9[ ab cos o’“’”(z dé —zgaw)Jr abcosd J'"( hae i aa)]

- 8t sin g sin d ( 184 1&4)

Lae t e

" abcosd

"L abcos @ LG abcos b

2 .
K (12 1.)_ stsm¢sln0Kr(l_4 l“)-{-—m dr?sinfcos¢

.stsingsinf 18 19
+¢ abcosd Bn(l;é¢ l4(9¢)

. 1di, 1 diy stsin¢sind l%_lt_ﬂ_@
+0B'"[( d0+lzd0)+ abcosd (z;.ao 14&)]

-8t sm¢s|n0 (l ;1 Ay )

+ 260~ si P\ 1;8g ~ ;%8
of stsingsing (184 184\  r’sing
+¢ [ abcosf Jm(133¢2 1,8¢2 d ab

. tda | 1d2 stsingsindf 18%; 184
lJm —”'_l 2 T a —‘—3—"“—1
+90 [( I, d0? " 1, d6? t " bcost ;3807 1,802

r? cosé 1613 la,, l<9l3 la;;
-5 . 7 Jm A T T RS ” )
st cos ¢ * ( ) +0J '[ & 1,0

Ldp 1,59

B, 180 180 o (185 14,
K(u 13)4""‘9 “"“¢+¢B"‘( L ¢ z4o¢)+"B( 30 hd‘))

. f riging 1 8%, 1 &y 2 10213 184,
+ 20¢[J3t cos¢ + J’"(—IEW + M%)] + ¢ ( L 8¢? + l40¢2)

oy (_16% | 18%
+”"‘( “na T

By dcfining,

(2.55)

(2.56)

PP
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- -
_ ldh _ 1dh
o=~ 1,
Lop — 1oy _ 14,
i %= L;(% 1460
- LN
071 de? T 1, de?
L 184, 184,
200 = T @ — 7 a7
{; 59! 1, 992
. _lay, 18, (2.57)
- 1,06 1,0¢
Lo 1O 1% 4
220 1,67 11097
i Loy, = 192_1_3 _ 1221_4
% Wo ™ 16088 1,809
- __ stsingsind .
- abcosr '
and
Jr2/abcos8 + JiuLig — Jmelos ~Jdoael g
= (2.58)
JmLag Jricos @ st cosn 4o,
Equations (2.55)2.56) can be written as:
Iy .
6 —Kr/l Krjl, —eKr/l||I tan 8 cos pdr?/ab i
e _ N—! Kr/ly Krlly eKr/l eKr/lL|| I LN an cos¢27/ mg ;
¢ 0 0 —Kf/l;; KT/[4 I tangdr-/st
[4 |
[ eBmLao | . [—BmL.o + CBmLzo} : '
N—! N—! 0
+ _’_ mL‘lnp ¢ + _BmL?o
[ eJmlage ..
-1 20
+N LJr2 sinﬂ/atcos«b—J,HLwJ ¢
+ N-—-l FCJ",L‘I‘N) - Jr2 sin 0/ab ¢-2 + N_‘l['—JleOO + &fml/zoo]g-z
I —Jmlage —Jml206
= /,(0, ¢'9'¢) b3(0,¢) " (2.59)
f‘(oﬁ ¢I o': ¢) b4(0, ¢)
where u=|[ h K I
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Define
z=100 ¢ 6 ¢]7
- the reduced-order modet can be written as:
£(t) = F(z(t)) + B(=(t))u (2.60)
where
' [ ()
Z4(t) '
F(z(t)) = A=) a 4-vector (2.61) ]
| fi(a(®))
. p- 0
0
B(z(t)) = bj(z. ('t)""z;i t)) a4 X 4 matrix (2.62)
bl (), 22(8)) i

Note: It can be casily shown from cquation (2.58) and several simple substitutions that the determinant

of N is always greater than zero for all 8, ¢ between (but not including) —7/2 and +#/2. Hence N—!

ey

always cxists.

24 Comparing the Responses of the Full and Reduced-order Models

To investigate the effect of representing a sixth-order system by a fourth-order model, a step of mag-
nitude four is applicd to both I, and I of the full (sixth) and reduced (fourth) order models developed in
sections 2.2 and 2.3 respectively. ,

The responses of the two models are shown in figure 2-9 and tabulated in Table 2-1. (The values of

the paramcters uscd is given in Appendix G).
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Figure 249. Response of the full and 1educedonds
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1t can be seen that the difference between the two is small except for the fact that the reduced order

system cannot model the angle .

Teble 2-1(a) Response of the Full Order Mode! due to step inputs on I,and I4.

Time ¢ ¢ Y 0 ¢ ¢

(msec) | (radian) | (radian) | (rackan) | (rad /sec) (adfsec) | (rad[sec)
O | 00000 | 00000 | 00000 | 00000 | 00000 | 0-0000
10 | 0-0020 | 00011 |-00004 0-4075 | 0-3306 |-00877
20 | 0-008l 0-0066 | -0-0018 | 0-8d6 | 06619 |-0-1809
30 | 00183 0-0149 | -0-004! 1-2226 | 0-9954 | ~0-2856
4 | 00326 | 00265 |-0.0075 | [-6928 | 1-3329 | -0-4080
50 0-0510 00416 |-0-0123 | 2-046! -6768 | -0-554%
60 0-0135 00601 | ~0-018) 2-4631 2-030! | -0O731@
0 | ©1603% | 0.0822 |-00271 | 29862 | 23970 | -0.9469
80 | 01313 o-lo8l |-00318 | 3 3i4| 27928 | -I-2073
0666 | ©1380 | -0-0514 | 37474 | 51949 | -I-5214
02063 | O-721 |-0O0684 | 4-1857 | 3-643! |-1-£A53
0-2%0% | o220 |[-00815 | 4:6215 | 4.140 |-2-2384
02988 0.2551 |~O-54 | $0103 | 47040 | -2-8546
0-5517 03054 (-0 1469 $-Si00 6-3593 | - 3.4496

0-4040 l 03c28 |-0p4] | 59345 | G.l4o5 | -4.1i5I
0-4104 ! O 4288 | ~0:2294 | 6-34715 | 7-09¢4 | -4.8444
05358 | O5055 |-0-2816 | 67152 | 8.2984 | -5-5854
0-6045 ' 05459 | - 0-3409| 7-0I3 | F-8479 | -G 2504
o-G?SGT 0704] |-0-405) | 71829 | |I-8885 | -6.633"
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Table 2-1 (b) Response of he Reduded order Hodel
dve to Step Inputs on Iz and 14

Time (S ¢ 6 ¢
(msec) | (radian) | (radian) | (rad/sec) | (vad/sec)

[0} 0-0000 0-0000 | O-0000 00000
{e] 00020 | 0:0017 | O-4070 | 0-3393

20 | 0-008) | 0:0068 | O-8i34 | O-G1q1

30 | 00183 0-0is3 | 112203 | [.0208
40 | 00325 | 00272 | |-6288 | [-3659

30 | 0-0509 | 0-0426 | 2-0318 | I-16e

60 | 00134 | 0:06I6 | 24540 | 2-0764

% | Ofoco | 00842 | 2-719 | 2-4490C
80 | 0308 | O-l0G | 32936 | 2-9388
9% | 0-1ésq9 | O-14 3.7188 | 3-2542
100 | 0-:2052 | O'1158 | 4-1466 | >-Tod2

llo | 02488 | 02153 | 4515 | 4-2013

120 | 0296) | ©-260l | 50014 | 47627
130 | 03488 | O3i0p | 54209 | %-4l2

180 | O0-40S| | 0-368) | 58265 | 6:17%4
150 | 0:4653 | 0-4349 | 62072 | 7-l082
60 | 0-Sa29f o0Sle | 65462 | 8.2616
70 05960 | 6:6olz | 6:8/1> | 9-7243
[80 | 0-66SO 01015 | 67185 | li-6/29




Chapter 3. The Time-Optimal Control Problem

As mentioned in Chapter 1, we would like to devise a control scheme to bring the arm from its initial
position to any specified final position as fast as possiblc, t.e., given any desired position z;, we would like
to find the control u(t) which drives £(t) — 2 to zero in minimum time, where z(2) is the actual position
of the arm at time ¢,

In this Chapter, we will first formally state the time-optimal control prollem as applicable in our
casc, and Pontryagin’s Minimum Principle will then be used to derive necessary conditions for the time-
optimal solution. We will then examine the time-optimal control of the tendyn arm system using the

reduced-order model.

31 Problem Statement

Given the dynamical system with state z(t) and control u(t),

(t) = F(z(t)) + B(z(t))u(t) (3.1)
where
z(t) is a 4-dimensional vector
u(t) is a 4-dimensional vector

F(z(t)) isa4-vector-valued function
B(z(t)) isa(4 X 4)-matrix-valued function
Find an admissible control u(t) which takes the system from the initial state zo to the final state z; in

minimum time, 1.e. find u(-) to minimize the following cost function:
ty
J(u())= dt (3.2)
o

where an admissible control u(-) is defined to be one such that every component satisfies the following

26
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magnitude constraint,
Unpin < ui(t) < Ujpar t=1,...,4 (33)
or written more compactly
u(t) €N forallt € [to, t/] (3.4)

t; in cquation (3.2) is free, and is part of the optimal solution.

In addition, F(z(t)) and B(z(t)) arc assumed to posssess the follosing properties:
. fi(z) and b, (z) arc continuous in z, and

2. 8f(x)/Oz,8b;,(z)/Ox; arc continuous in z,

where f(z), b; (), zi. are components of F(z), B(z), and z respectively.

32 Application of the Minimum Principle

Pontryagin’s Minimum Principle (Athans & Falb[3]) furnishes us with necessary conditions which
the time-optimal control u’(¢) must satisfy. Any control u,(t) that satisfics all the necessary conditions
is known as an extremal condition, and is a candidate for the optimal control. If a time-optimal control
exists, and if there are more than one extremal control, then the one with the smallest cost given by
equation (3.2) is optimal.

In order to apply the Minimum Principle, we will define the Hamiltonian:
H(z(t), p(t), u(t)) = 1 + p" (t)[F(=(t)) + B(=(t))u(t)] (3.5)

where p(t) is a 4-dimensional costate vector.

Let u*(2) be an admissible control which transfers the system from zg to z;, and let z°(t) be the
corresponding trajectory. In order for u’(t) to be optimal, it is necessary that there exist a function p°(t)
such that;

(2) p°(t) and £°(t) are a solution of the canonical system:
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#10) = Z0.'0,u10) (3.6)
50) =~ (='(0) 5°t), w'(0) ()
satisfying the boundary conditions
z"(to) = 2o

2(ty) = 24 (3.8)

(b) Forallt € [to, ty]
H(z' (), p(t), u'(t)) < H(z"(t), p’(t), w) forallu € Q (3.9)

(c) Forallt € [to, t/],
H(z'(8),p'(t), v’ (1)) =0 (3.10)

This is a consequence of free terminal time and time invariance of the system.

Athans & Falb{3] presents a heuristic proof of the Minimum Principle, whereas a formal proof can be

found in Pontryagin et alf4].

33  Bang-Bang Control

Substituting equation (3.5) into (3.9), necessary condition (b) reduces to
pTWBE W) <P ®BE" B foralluen (3.11)

or written in componcent form,

4 4 4 4
B u;(‘)( ) bfj(z'(t))P:(‘)) <Y u,-(E bij("(‘))ﬂz(f)) (3.12)

j=t =1 Jo=1 L]

2. . . . . 3 _._-...._.__‘A.._.‘
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for all u; satisfying equation (3.3).
If we define
4
() =D bz WOpi(t) =14 (3.13)
i=l
Equation (3.12) then becomes
4 4
3 ujtest) < 3 uglt) (3.14)
=1 =1

The conuol u'(t) which satisfics the above incquality and subject to the constraint of equation (3.3) is

given by
u;(t) = Umaz ifgj(t) <0

u;(t) = Umin ifg;() >0 j=1,...,4 (3.15)
u;(t) indcterminate  ifq;(t) =0
We sec that u’(t) is well-defined by equation (3.15) if there is only a countable set of times ¢;; € (fo, t/]

such that

g;{tij) =0

Under this condition, every component u;(t) of the optimal control u*(t) is a piecewise constant function

of time, u"(¢) is then known as a bang-bang control, and we say that the problem is Normal.

If, on the other hand, there is one (or more) subinterval [m, &, within [to, ¢] such that
g;(ty=0  forsomej andallt € [tm, to)

then u;(t) is not defined by equation (3.15) for ¢t € [tm, ¢,]. and we sy that we have a singular time-
optimal problem; the time interval [t,, ¢y)is called the singularity interval.
Hence we sce that if the problem is normal, the time-optimal control is bang-bang. For linear

time-invariant system, we can derive necessary and sufficient conditions for the time-optimal problem to

4
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be normal (sce e.g. Athans & Falb[3]) or singular, but for gencral nonlinear systems, there is no such
conditions, hence it is very difficult to rule out the cxistence of singularity intervals before solving the

problem.

34  Time-Optimal Control of the Tendon Arm System

For the tendon arm system, the equations corresponding to cquation (3.1) are given by equations
(2.60)+2.62) which describes the reduced-order model.
Since the tendons can only pull but not push on the arm, there is a non-negativity constraint on the

control, and equation (3.3) will now be replaced by
0< tift) < thmar =1 ..,4 (3.16)

The expression for B(z(t)) can be obtained from equations (2.62) and (2.59):

If we represent N~ in equation (2.59) by

. hiy hi2
N = [ha N ] (3.17)
1 ha

Then

'@(;(_t_))_] _ [t bn ba b
by(=(t) bar bya bgy by
— h“ hn] ——Kr/l, Kr/lz er/l:j —eKr/l4
ha hl| 0 0 —Krfly Krfl
o/ hufly —(hi2 — ehiy)/ls (12 — ehn)/ls
- Kr[—hm/ll haiflh —(h22 — ehui)/lz (h22 — dm)/h] (.18)

and from cquation (2.62),
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Substituting equations (3.18) and (3.19) into (3.13), we obtain the following expressions for q;(t):
. hiipy(t) + haipi(t)
q,(t) = —Kr . l :
. hiipj(t) + haipy(t
qQ(t) = Kr s L) : )
. . (3.20)
. L (12 — eh1)py(t) + (hay — ehay)py(t)
qJ(t) = —Kr l3
- . hiz — ehy ) )p5(t — ey )pi(t
ot = Kr( 12 n)ps(t) :'(hfn 21)p4(t)
4
The q;(t)‘s will be used in equation (3.15) to determine the value of u"(t). Since the sign and not the
i -~ magnitude ofq;(t) is important, and sincc K, r, l;, ¢ = 1, .. ., 4 arc all positive, we will define a new set of

t'];(t) that can also be used in cquation (3.15): B

#,(t) = — (hupi(t) + haipi(t))
3(t) = hiip3(t) + hapy(t) (3.21) 1
g(t) = —((h12 — ehn)p3(t) + (ho2 — ehai)pi(t)) .
ga(t) = (h12 — ehi1)pa(t) + (ha2 — ehar)pi(t)

and the optimal control u*(t) is given by
u(t) = Umas ifg;(t) <0
ul(t) =0 ifg()>0 j=1,..4 (3.22)
uj(t) indeterminaic  ifg;(t) =0

where q;(t) is given by equation (3.21).

Note that in equations (3.21),
G(t) = ~4;(0)
8(t) = —4(t)

If we define new variables q;,(t), ¢34(t) given by

q;g(t) = ‘-I:(t) = _(hllp;(t) + h’llp;(t)) (3 23)
Ga(t) = @3(t) = —((h12 — ehi1)pi(t) + (haa — eha)py(t)) .
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Then equations (3.22) can be rewritten as
if g;,(t) <0, Ui(t) = Upmas, ug(t) =0
if gjo(t) >0, u,(t) =0, ty(t) = tma: (3.29)
if q3,(t) =0, uj(t), u(t) indeterminate
and . . .
if q34(t) <0, uj(t) = Umaz “4(t) =0
if 034(‘) >0, u;(t) =0, u;(t) = Um..r (325)
if g34(t) =0, uy(t), uy(t) indeterminate

From equations (3.24) and (3.25), we sce that there is a certain relation between u;(t) and uj(t). between
uj(t) and uj(t). except in the case when g},(t) = 0 or q3 «t) = 0. The four control components scem to
work in pairs, u}(t) and u(t) forming one pair, u(t) and uj(t) forming the other. This agrees with tie
physical situation, in which tendons 1 and 2 form one pair, and tendons 3 and 4 form the other.

Necessary conditions (a) and (c) apply directly to the tendon arm system with the appropriate

definition of the Hamiltonian function.




Chapter 4. lterative Solution of the Time-Optimal Control Problem

4.1 Introduction

In Chapter 3, we have seen that the Minimum Principle provides us with necessary conditions that
the eptimal solution must satisfy. In particular. manipulation of necessary condition (b) viclds equations
(3.24) und (3.25) which express u*(t) in terms of 2°(£) and p*(f). 1f the problers s nonssingular, u’(t) is
well-defined and theoretically we can solve the time-optimal control problem by chinunating u'(¢) from
the canonical system given by equations (3.6)-(3.8). and solving the resulting two-point boundary value
problem to obtain z°(t) and p’(t). and hence u’(t). But two-point boundary value problems are very
difficult to solve analytically except for some simple cases. Huuoo for higher order lincar and nonlinear

systems, we must in general resort to iterative methods to obtain solutions,
A solution ubtained by any iterative method is characterized by:

1. itis only applicable to a specified initial and final position pair. To obtam solutions for other pairs, we

have to repeat the entire iterative solution procedure, and
2. itis expressed as a function of time.

The first statement means that we have to brecomputc and store the control trajectories of every
relevant initial-final position pair, the second means that the control is open-loop and hence cannot
correct for any departure from the intended trajectory due to, say. cxternal disturbances. These are
disadvantagces, but since the complexity of our system precludes any other solution approach, we have to
cmploy the iterative approach and take into account the aforementioned disadvantages in the design of

the overall control scheme which will be discussed in later Chapters.

Plant[5] and Mufti{6] provide a surveys of various computational methods in optimal control problems
and each contains a long list of supporting references. The criteria for choosing an iterative method for

our problem arc that,

13




1. itis casy to code, and
2. itcan handle singular problems,

The second point is essential because as mentioned in Chapter 3, the possibility of the presence
of singularity cannot be ruled out, and in fact, from some preliminary runs using the steepest descent
method, one pair of controls does not approach bang-bang, indiciting that the problen might be singular.

There arc some computationad methods developed expressly for singular poblems (sce e.g. [7]-[10)).
But the Conjugate Gradient method is chosen because
1. itis basically a first order method. hence its implementation is simple, and
2. itcomerges quadratically near the optimum solution, and

3. itcan handle singular problems.

4.2 The Conjugate Gradient Method

The first order gradicnt method is easy to implement but suffers from slow convergence near the
optimal solution. In 1967, the Conjugate Gradicnt Mcthod was applied to optimal contro! problems [11].
[12]. The convergence rate of this method is superior to the gradient method with very little additional
computation per iteration. Pagurck & Woodside[13] and later Quintana & Davison{14] extended the
method to problems having boundced control constraints.

We will first describe the Conjugate Gradient method as applied to a free end point, fixed terminal
time, optimal control probiem, and in the next section, we will show how it is adapted to solve our time-

optimal control problem.

Problem Statement

Given the system

(1) = F(z() + Bl=(O)ult),  =(to) = = (a1

Find u(t) over the interval {t, t/] 1o minimize the cost function given by
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t
J(u(t))=K(x,(t))+/' L(z(t), u(t)) dt (4.2)

where t is fixed, and u(?) is assumed o be unconstrained.

Define the Hamiltonian
H(z(t), p(t), u(t)) = L((t), u(t)) + p" ()[F(=(t)) + B(z(t))u(t)) (4.3)

Then the necessary conditions as give 1 by the Minimum Principle are the same as equations (3.6)+3.10)

cxcept for the boundary conditions (3.8) which arc replaced by:

z'(to) = 20 s
Pl = S (="(t) |
Solution Procedure
Define
SH T
H(=(t), p(t)) = 5 (=(t), p(t), u(t)) = BT (z(t))p(t) (45)

Let superscript ¢ represent the iteration number, and assume that we start with an initial estimate of the

optimal control trajectory u!(t).

At the ith iteration,
1. Using u'(t), intcgrate the state equation forward from time o to t, with z(ty) = =g, to obtain z¥(¢).

Then, substituting z*(t) and u*(¢) into the costate equation, integrate it backward from t; to o with
. K, .
Pty = 5, (=°ts))

to obtain p*(t).
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Compute
g'(t) = Hup'(t), (1)) (4.6)
2. Detenmine conjugate-gradient direction using:
S{t) = ¢'(t) + 6" 18 (t) (47)
where
s W T [
e Twe o
= >1
g o= Twe = (48)
g =0 ifi=1
3. Compute next control by,
u't1(t) = u' — a's'(t) (4.9)

where a* is chosen using a one-dimensional search to minimize J(u'+'(¢)).

4. Repeat the whole procedure with £ = ¢ 4 1 until J(-) does not improve significantly.

Control Constraints

To take into account constraints on the magnitude of the control as given in equation (3.16). the
above procedure is modificd as follows (duc to Pagurck & Woodside[13]):

1. Assume that W/ is the saturation region of u}(t): define the scale function

wift)=0  fort € W, and

(4.10)
=1 elsewhere

Note: subscript j refers to individual components of the corresponding vector.

2. When computing 8 1w’ ()g*(t) is used in place of gi(t).

+1

3. After computing u'*! according to cquation (4.9), u*+!(t) is truncated at the upper and lower

bounds before it is used in the computation of J(ut+1(t)).
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43 Algosithm for the Time-Optimal Problem

In order to apply the conjugate gradicnt method as presented in the last secton. the ume-optimal
problem as stated in section 3.1 is modified as follows:
1. A sequence of fixed terminal tme, free end point problems are sobved instead of the origingl free
terminal time problem.
2. The fixed end point constraint is handled by means of a quadratic penalty function, that is, we solve
the following problem:
Given the dynamical equation described by equation (3.1). find a contiol u(t) € 2 50 as 0 minimize

the following cost function:

J = ;(::(t,) —2)7Q(alty) — z) (4.11)

subject to z(ty) = =z, with tg. t; and z; given.
Ifty is too small, t.e., ¢y < Tonin, where Ty is the minimum time solution, the systemn cannot reach 7
with the control in €2, hence J will not be close to zero. As ¢y increases and approaches T,y n, however,
the optimum J value will decrease, and the smallest ¢, such that J is zero (within a certain tlerance) is

the solution to the original time-optimal problem.

Choice of t[

We can always start with a very small ¢, and gradually increase the value of ¢, but this will take too
long as cach round (i.e. solving the modified problem with a given ty) by itsclf takes a long time (when
run on a PDP 11/34 mini-computer). Hence we will make use of the special structure of the optimal
contro! to providc an estimate of Thryin.

It was found from some preliminary runs that in an optima!l solution, one pair of controls, cither
u; and uy or uz and u,, always approaches bang-bang with only onc switching, and the form of the

other pair will depend on the relative magnitudes of 0, and ¢,. which define the final position of the




38

arm (henceforth we will assume that 2y = 0, 1.e., we are interested in moving the arm from an upright
position to any specified iinal position. Although the two pairs of controls are coupled through the system
cquation. the coupling i~ not ery strong, and once can clearty identify the pair u; and u;, as affecting the
angle 8 much more stronghy than u; and uy. and similarly, the pair ug. u; affects ¢ much more strongly.
Hence the time taken for the arm o move from @ = 0 1o @ = §; is determined mainly by u; and uy. and
is only slightly affected by vy and ey, the same applies to ¢ with u;, ug exchanging roles with u, u;.
Hence to find the ume taken for the amn to move from @ = ¢ = 0 0 d = 67, ¢ = 0, we will keep
w3 and uy to be zero (thereby ensuring @ to stay 0 throughout) and find a bang-bang control that will take
8 10 0y, this is a much casicr problem to solve because we need only to search over the switching time,
which is only onc-dimersional and can be casily done manually. Similarly we can find the time taken to
move fromd = ¢ = 010 d = 0.4 = ¢;. The larger of the two values found above will be taken as an
estimate of T,,,,,,. This value was found, in gencral, to be greater than T,,;,, by about one to three time
steps (each time step is § msce). Hence the initial choice of ¢ is taken to be three time steps smalter than
the cstimated Tp.n, and we need to solve at most three rounds of the modified problem to obtain our

solution.

Choice of @

Q is chosen to be diagonal and serves to weight the different components of z individually. We chose
the ¢,, that corresponds 1o the wiere that is mainly affected by the bang-bang pair of controls to be twice
the value of the 1est Hirs s because as the iterations proceed, it becomes more and more difficult to
reducc that crror term, as we arc trying to reduce the transition time of the bang-bang control, making ¢,

larger helps.

Choice of Initial Guess of u(t) in the Conjugate Gradient Mcthod

The initial guess is chosen to be
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u(t)a 0  fori=1,.. ,dandforallt & [k, ¢, (4.12)

and we started with several iterations of steepest descent before switching over fo the conugate gradient

method.

Method of finding a*

As mentioned in the procedure for the conjugate gradient method, a’ is chosen using a one-
dimensional scarch technique. The method we used is to fit 4 parabola to thiec points of @’s, chosen $o
that the minimum of the parabola falls within the two extreme values ol the @'s, @' s chosen o be the

valuce of a that minimizes the parabola.

44  Approximation of the Optimal Solution

The results obtained using the conjugate gradient method for a partcular final position is given in
figure 4-1. From this figure, we can sec that the pair u3 and uy approaches bang-bang with one switching,
but not the pair u; and us.

The optimal solution can be approximated by straight line segments as shown in figure 4-2, the stae
trajectories for the optimal and the approximated control are shown in figure 4-3. and we sce that the
responsc due to the approximated control compares favorably with the optima! solution. Any deviations
from the desired state at the terminal time will be handled by another closed-loop control law which will
be switched in after the open-loop control is terminated.

The general form of the optimal control and its approximation will be claborated in Chapter 6.
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Chapter S. Regulation at the Final Position

5.1 Introduction

Since the arm is attached (o the base plate by a three degree-of-freedom "joint”, positive steady-state
tensions in the tendons are required to maintain the arm at any specificd finar position. The required

control currents can be calculated by satting
fj = f(:t/, u,) =0 (5.1)

where z; is the specified final state of the system.
A uy that satisfies the above cquation will be called a steady-statc control for the set-point z.

If the arm is initially at the required final state z;, then u; will keep the arm at z; as long as there
is no external disturbance. However, any slight disturbance will cause the arm to move away from this
cquilibrium position because the equilibrium achieved by applying constant open-loop controls uy is an
unstable one.

Moreover, the transicnt phase open-loop control that brings the system from initial to final state
is based on a reduced-order model of the system, and also in order to implement it, it is necessary to
approximate the form of control by straight line segments. The open-loop control can only be stored at a
few points and the control law at other points is derived by interpolation. Hence at the end of the transient
phase during which open-loop control is applied, the final state reached by the system is not z;, but rather

somewhere in the vicinity of it.

In view of the above, cluscd-loop feedback control is required to
1. bring the system to the desired final state zy,

2. maintain the system at z; for any amount of time.

5.2 Lincarized Model
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Figure 5-1. Block diagram for the closed-loop feedback controi scheme.

Let z; denote the desired final state. and uy denote the stcady-state control that satisfics cquation
(5.1).
Define

1. State perturbation vector §z(t):

6z(t) = z(t) — z;

2. Control correction vector §u(t):

Su(t) = u(t) — uy

Then the control objective can be stated as follows:

Given 6z(t), find 6u(r), 7 > t such that future state perturbation vectors 6z(7) arc as small as
possible for all 7 € [, 00), or find a controllcr, as depicted in figure 5-1 that will accomplish this.

We will cmploy the lincar-quadratic approach to designing the controller. Since we are trying to keep

the system at a fixed set-point, this is also known as the lincar regulator problem.

First we must derive the relationship between 8z(t) and du(t):

L 2




z(t) and u(t) arc related by the system equation:
2(t) = f(2(t), u(t) (5.2)
Expanding f(z(t), u(t}) about 2. uy in a Taylor series expansion,
H(a(8) ult) = S, u7) + 52z u)o20) + 2L (2 u)oult) + ot (5.3)

where h.o.t. denotes the higher order terms in the Taylor scries expansion.

Since
SZ(t) = Z(t) — %,
and ]
i/ = /(Ifl u’/) =0,
we have,
. 3f of
§1(t) = 6;(;,, us)oz(t) + 6——u(:|:,, us)bu(t) + ho.t (5.4)
Define of
A= a(zlv ty)
(5.5)
B=%(z,u) '
Su' ™ :
and assuming that the higher order terms are negligible, we obtain to first approximation that
61(t) = Abz(t) + Bbu(t) (5.6)

For the remainder of the Chapter, the é-notation will be dropped for simplicity, and the lincarized

muodcl will be represented as

£(t) = Az(t) + Bu(t) (5.7)
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5.3 The Lincar Regulator Problem
Guven the lincar time-invariant system
£(t) = Az(t) + Bu(t) (5.8)

and its initial condition zy. find u(t) such that the following quadratic cost functi ynal is minimized
oo
= / («"(O)Qx(t) 4 ' (t)Ru(t))dt (5.9)
)}

where@ =QT >0, R=RT >0.
Derivation of the solution to the above problem can be found in Kwakernask & Sivan[18]. 1t is

shown that the optimal control u’(t) is given by
u'(t) = —Gz(t) (5.10)

where

G=R™'B'P (5 11)
and P is the solution of the following Algebraic Riccati Equation (ARE):
0=—PA—ATP—Q+ PBR'B"P (5.12)

If the original system is completely controllable, then the solution to the above ARE exists. In
addition, since we are assuming that we arc obscrving all the states, the system is completely obscrvable, it
can be shown that the feedback system is asymptotically stable (sec e.g. Kwakernaak & Sivan{15}).

We will now consider the choice of the weighting matrices Q and R in the cost function given by

cquation (5.9):

*——W—u“




In general, the selection of Q and R is not a simple matter; they are usually chosen on the basis
of engincering experience coupled with simulation runs of the resultant system using different weighting
values. In most practical apphications, R and Q are chosen 1o be diagonal because in this way we can in-
dividually penalize specific components of z{¢t) and u(t). We will likewise choose R and Q to be diagonal.
Since there i1s no reason to penalize any one component of u(t) more than the others, R is chosen o be
of the fonn pl. where p1s a positine scalar. Once @ 15 chosen. by adjusting p, we can vary the relative
weighting between the state perturbation and control perturbation vectors.

Specifically, the effects of p are:

1. the smaller p s, the faster s the state perturbation vector z(t) reduced to zero, this corresponds  the
poles of the system being pushed to the Ieft of the s-plane.

2. the smaller p is. the larger will be the feedback gain matrix, 1.e. G in equation (5.10), this corresponds
to large control magnitude.

Hence there will be a tradeoff between the speed v response and the amount of control to be put into the

system.

When we consider the maximum allowable magnitude of control perturbation, we must bear in mind

the control constraint which is given by
0 < u,{t) < Ymar fori=1,...,4 (5.13)

where u,(t) here is the total control input to the system.
In our case, since we are interested in reducing the position error to zero as fast as possible, we

choosc not to penalize the velocity terms. Hence Q is of the form,

[IJ 0;
o-|" 7]
0, 0;

and p is choscn so that the sfowest pair of poles is only slightly underdamped so that there will not be

much overshoot.

N i it i
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Taking all these mnto consideration, and after some trial and errors and looking at the closed-loop
eigenmvalues and resultant runs, p s chosen o be 0.2, The values chosen are not optimal, but they repre-
sent o reasonable chotce and yield an acceptable response. The response can of course be unproved upon

by turther fine-tuning, but we are not putting any emphasis on it at this stage.

54 Determination of Steady-State Control Input

The steady -state control ug(t) -equired to hold the arm at any position. say 8. @7. ¥y. can be ob-
wined from equation (S.1). wherez, = (6, ¢, v; 6, &, wv;)7. Since z(t) is a 6-vector, we will
obtamn six algebraic equations from cquation (5.1). but the first thice do notimvolve u(t) and only give us
I, = 15 = 15 = 0 which corresponds [()9/ = cﬁ/ = 1,[1/ = 0.

Iherefore from equatton (5.1) and by substituting the valuesof r, = (6, ¢, v, 0 0 O)T into
i, we can obtain three algebraic equations involving the four scalar controls uy 1 = 1, 4; by solving
these three equations, we can obtain uy. However, note that we have one degree-of-freedom in choosing
uy subject to the three equations and the control constraint given by equation (5.13). By specifying any
one of the uy,'s. we can uniquely specify the other three,

There are two ways of taking advantage of this one degree-of-freedom:

we could, for cach position, find the minimum values of control that will satisfv the three equations as
well as the non-negativity contraint. Effectively we are setting one ot the uy,’s to be zero and solving
the three equations for the other three uy,’s. The one to be st to zero is chosen such that all uy,’s are
non-negative.

we could introduce another algebraic equation involving the uy,'s. and by solving these four simul-
lancous equations we can get unique values for the uy,’s. Specifically, the equation introduced

1S

4
Y un =k (5.14)
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Since all the uy,'s are non-negative, the larger the value of k, the larger are the uy,'s. In this context,

this degree-of-freedom is thought of as providing us with the freedom of choosing the overall controf

level.

The first method is attractive in that it provides us with a way of specifying minimum control to keep
the arm at any desired position, since we do not want to cxpend unnecessary ¢nergy holding the arm at a
fixed position. However, since one of the components will be zero, or very near 7ero, the non-negativity
controf constraintis casily violated when we apply the feedback control law as ¢ iven by equation (5.10).

On the other hand, the second method provides us with a way of specifying uy at any position such
that Y uy, at all positions within the working space is the same. This is attractive because it was found
that if this is so, then the "main” components of the feedback gain G as given in equation (5.11) do not
vary significantly for all the positions. This point will be elaborated further in Chapter 6.

Hence the second approach is used. k is chosen such that for any position within the working space,
the uy,’s obtained by solving the four simultancous equations are all non-negative.

‘The value of k found and used is 7, and the most critical position (with one of the uy,’s nearest to

7ero) occurs approximately ata = 45°, 8 = 10°, ¢ = 45°.




Chapter 6. Implementation and Simulation of the Overall Control Structure

6.1 introduction

As stated in Chapter 1. we are interested in moving the arm trom an upright posttion o any specified
final position. The overall control scheme for this movement is divided into two phases. In the first phase,
open-loop time-optimal control approximation is apphed to bring the arm to the vicimity of the specified
final position. In the second phase. a closed-loop lincar feedback controt law will be switched in o bring
the system to the desired final position and to maintain it there,

in order to implement this control scheme, we must have available the open-loop control and the
feedback gain for every final position that can be specified. Since the computation nme of the former is
o long and the memory requircment for the latter s too large tor them to be calculated on-line using
the PDP 11745 which is used for the control of the tendon armi. they must somchow be precaleulated
and stored. Since it is impossible to store the values for every possible final position. which are infinite
in number, we nced to partition the entire state space into regions and precompute the open-loop control
trajectory and the feedback gain of a representative point of cach region and stere them in tables of some
sort. As for the other points in the region, we can either interpolate or use the same value throughout a
region. The latter approach is employed due to:

1. the feedback gain does not change significantly within a region, and
2. there is no satisfactory way of interpolating the open-loop control. and since feedback control is
cmployed in the second phase, we rely on it to bring the system to the desired state, and
3. itissimple.
The next two sections describe means of representing and storing the open-loop control trajectories
and the feedback gains. The last section describes briefly the program written for the implementation of

the vverall control scheme.
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6.2 Representation and Storing of Open-1.oop Time-Optimal T'rajectories

Symmetry of the Control Trajectories

‘The design and construction of the tendor arm is such that it restricts the range of movement of the

arm. In this thesis, this range will be t ken as

(6.1)

Ao o
IANIA A
< ™ 0
IA A IA
N Il

where a. 8. ¢ arc as defined by figure 2-4,

We will divide this space into four quadrants with the following correspondence:

0<p <} Ist quadrant
I<B< 2nd quadrant
TP < 3rd quadrant
P << 4th quadrant

For the time-optimal trajectories, there is a symmetry among the four quadrants such that only those
of the first quadrant need to be stored and those of the other three quadrants can be obtained from the
corresponding trajectory in the first quadrant.

Let u,(t). ¢ = 1,..., 4 be the control trajectory that will bring the system from the initial position
to a final position defined by 8 = 6/, ¢ == ¢;. where (6. @) is in the first quadrant (recall that the time-
optimal control is obtained using the reduced-order model and hence ¥ is not relevant).

‘Then, to obtain the control trajectory for

1. 8= —0;, ¢ = —¢; cxchange u,(t) and uy(t), exchange uz(t) and u4(t).

2. 0= —0, ¢ = ¢ exchange u (t) and uy(t), do not exchange uz(t) and u4(t)
3. 0=0;¢ = —d¢;: donotexchange u(t) and u,(t), exchange u;(t) and u,(t).

Hencc in all the discussion that follows, we will take the final position to be in the first quadrant.
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Figure 6-2. Form of the bang-bang pair of controls

Form of time-optimal control

As stated in section 4.3, it was found that, in general, one pair of controls is bang-bang and the other
pair is not (both pair of controls could be bang-bang for certain valucs of 8, and ¢,). Which pair it is that

is bang-bang depends on the relative magnitude of 8, and ¢y.

In gencral, the pair that is not bang-bang can be well-approximated by straight line segments, and
they can be of any form as shown in figure 6-1. The pair that is bang-bang is of the form that is shown in
figure 6-2. Hence any pair of controls can be represented by the numbers hy. hy, 8y, to, 3, t; as shown in

figurc 6-3.
There are two ways of representing the open-loop control trajectory for any final position:

1. Represent both pairs by the general form shown in figure 6-3. By choosing appropriate values for Ay,
hai, t1i. b2, 34, by, 1 = 1,2, we can represent any of the forms given by figure 6-1 and the bang-
bang controi of figure 6-2. (i = 1 represents u; and up, £ = 2 represents uy and uy). Since in
implementing the control scheme with a digital computer, the time axis is discrete, hence the ¢,,8 are

integer numbers. Using this scheme, we need a total of 4 real numbers and 7 integer numbers to




54
— Ua{ Ve
or
L 1
u u U, v
(u; u:) (Ua-”z)
”
e ,1\ ’/, :
/’ 1 /’ !
g \ ,1, |
>N’ J |
dhu'l Uhul
(U; ,U‘) (Ul ,U‘) /f'!
1 {
~ / i
A ;o
’ \ / |
/, ! /' ||
/ : / Jl
o © Yime O ) ¥f e

Figure 6-1. Various forms of the non-bang-bang pair of controls

represent the control trajectory of each final position.

2. Represent the non-bang-bang pair by the gencral form, and represent the bang-bang pair by one

number, that of the switching time. Hence in this scheme, we need 2 rcal numbers, $ integers and 1

bit to indicate which pair is bang-bang.

The first method is chosen because it is straightforward to code and at this stage we are only trying out

1 ~ overall control scheme using simulation and hence the partitioning into regions is very coarsc and is as

shown in figure 6-4. We are not too concerned yet with conserving storage.
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Figure 6-3. General representation of any pair of controls ‘

in practical implementation, we need of course to partition the state-space into a finer grid, hence
reducing the storage requircment per point will be one of the prime concerns. We can then consider the
following two ways of saving storage:

1. With the sampling rate (5 msec) used, the maximum time step corresponding to £y is less than 100,
hence we can pack two time values (e.g. ¢; and £3) into onc word.

2. In actual system implementation, the control will be applied to the motors via digital-to-analog con-
verters which takes integer value as input, hence the control valucs can be stored as scaled integers
instcad of real numbers,

If these two modifications are implemented, only 8 words for the first method and § words for the second

method are required per point.

63  Rcpresentation and Storing of Feedback Gains

The feedback gain G of the lincar regulator design is a 4 X 6 matrix. If gi;, ¢ = 1,.. 4, j =

1,..., 6, represents the component of G, then g, is the contribution of 2, to u,, t.¢.,




-

- :

Figure 6-4. Panitioning used in the simulation run

8
= — D 0ij% (6.2)
j=1
where #; is the stcady-state control.
Hence we can partition the matrix G into main components and cross-coupled components:
For u; and uy, since they dircctly affect @ and 6, and only indirectly ¢ and ¢, we will treat g1y, @), Gi4. D24
as main components.
Similarly for u3 and w4, since they directly affect ¢ and ¢, we will group @32, @42, @35. G945 s Main

components.
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Figure 6-5. Cross-hatched area showing the main elements of matrix ¢;

Since all four controls dircctly affect 4 and ), we will treat g,3. gi6. ¢ = 1, ., 4. as main components.
Hence as indicated in figure 6-5, the cross-hatched elements are the main components.

Table 6-1 shows the feedback gains for the various positions indicated in figure 6-6 and for ¢ = 0.
From this table, we can sec that the valuces of the main components do not vary much for different
positions, and it is only the cross-coupled terms that change significantly, for example, compare ¢y, g9 of
points 5 and 6, there is as much as an order of magnitude of difference.

Table 6-2 shows the feedback gains for position 3 (a = #/6, § = =/4) but with diffcrent values of
9. It can be seen that all components of G do not vary significantly for different ¢, hence we will take
them as the same and cqual o those at ¢ = 0.

Table 6-3 shows the feedback gains for position 3 and its corresponding positions in the other three
quadrants. To a first approximation, we can obtain G of the third quadrant from the first quadrant, and of
the fourth from the second as follows:

exchange row 1 and 2, row 3 and 4, and

change the signs of all the clements except those of columns 3 and 6.

L E

T A S SRy




58

! ok*15°ctsdg’ ok e 45°

Figure 6-6. Figure showing various final positions used in Table 6-1

For implementation purposes, we will treat the main components of G to be the same for all posi-
tions in the four quadrants, using those of the upright position, and store the non-main components for
position 1, 3, 5 and 6 and their corresponding positions in quadrant 2, t.e., the partitioning into regions is

the same as for the open-loop control.

6.4  Structure of Overall Control Program and its lmplementation

The working space of the arm 1s defined by equation (6.1) and is partitioned into regions as shown in
figure 6-4. The open-loop control and feedback gain of the representative point, called the center, of cach
region arc stored as described in the last two sections.

When a set-point command is issucd, the program will first determine which region the final position
is in, after which the entire open-loop control trajectory and the feedback gain G for its center are deter-
mincd. these will be used for the final position specified. At the same time, the stcady-state current at the

final position is calculated.

The open-loop control is then applied to the system: at each time step, gencrated by an interrupt

|
|




59

from the real-time clock, a control vector is output to the systent. At the end of the first phase. determined
by the final time of the open-loop control, the closed-loop lincar feedback law will be used: at the occur-
rence of cach interrupt, the state of the system is read via the A o D, from wlach the state perturbation

vector 8z is calculated, and the control correction vector is calculated by

u = u; — Géz (6.3)

where uy is the steady-state control vector.
‘This u is then output to the system.

Becausc the physical tendon arm system is not ready. the overall ¢ ool seheme will be simulated on
the PDP 11745 computer. But the program is writien as f 1015 a real time system eacept that a sofiware
subroutine is being substituted for the arm, and the time scale s expanded due to the length of time

required for the subroutine. ‘The bluck diagram for the program s given in fipure 6-7.

Figurc 6-8 shows the state trajectories for three different final positions.

PP SR P

*
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Figure 6-7. Block diagram for the overall control program
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Table 6-1  Feedback gains for the varlous positions shown in

Figure 6-6

i <=0,

=4.0294D+00 -2.1103D-01

p.ool,.p‘oo

1.5C44D+00 -6.06780-0! -2.2333D-02 ©.30860-02

4.02340+C0 2.11030-01 1.5044D+00 B6.0678D-01 2.23330-02 8.30860-02

-2.8960C-01 -4.8319D+00 -1 .5363D+00 -1.80810-02 ~7.53780-01 ~§ .48500~02

2.89600-01 4&4.E319D+00 -1.53630+00 1.80810-02 7.53780-01 -8 .48500~02

2 K5’ , pran’

-3 .49300+00 3.6891D-C1  1.C416D+0C ~5.39200-C1 43.2670D-02 6.90650~02
3.5889D+C0 7.4437D-01 1.04920+00 5.9555D-01 8.72050-02 6.91740-02
1.70860-01 =4.3907D+0C ~1.03960+00 2.6577D-02 -6.87810-01 -6.9136D-02
5.5215D~01 4.3673D+00 -1.09710+00 4.17200-02 7.34140-01 ~7.2071D~02

3 ox*30°. p:=45

~3.6BE6D+00 1.03.3D+CO 1.033:04%C -5.2884D-01 1.10980-01 6.947b0-02
3.7028D+C0 1.1766D+00 1.0480D+400 6.30000-0% 1.41530-01 6.91130-02
9.2702D-Ct -4.44820+C0 -1.01310+400 9.9182D~-02 -6.52230-01 ~6.80770-02
5.6905D-01 4.4091D+00 =-1.1180D0+400 3.3458D-02 7.44%60-01 ~7.32970-02

4 o<: 45 | p=4s’

-4 .29140+00 1.69540+00 1.0417D+00 -5.4604D-0% 1\ .70140-01 7.0824D-02
3.8881D+00 1.63450+00 1.040C0+00 6.7243D-01 2.016CD-0t @.86190-02
2.0307D+00 -4,5805D0+00 -9.93080-01 1.96370-0t ~6.1743D-01 ~-8.7677D-02
3.8914D-01 4.60250+C0 =1.12670+00 ~5.84568D-03 7.81070~01 -7.3971D-02
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-4

.9004D+00 2.67390+00

.45750+00

L.21790-01

.1603834C0

.5281D+00

. 22490400

01330., ﬁ: O°

LSS 400 1.3GT2DC0 1.06C30+00
.62332+C0  1.8534D+00 1.09650+00
.5533D0-C1 -3.91460+C0 -9.06540-21
.95950-01  4.7<320400C -1.13€20+(C
«: 30, p:90°
.78338D+00 -1.30650-02 9.7825D-01
.02620+4020 3.8434C-01 1.0033D+CO
.23850-01 ~3.8B834D+00 -1.1523D+00
.3934D0+400 4.1661D0+00 =1.09090+30

ok :45‘ [ p ¢ 225.
1.11030+20

2.52950+C0 1.09460+00

.C4340+400 ~5.0584D+00 -B.36550-01

$.2718D+00 =1.1241D+00

xcd5* . p: 615
7.1318D-01 9.2594D-01

9.10090-01 9.93793-01

.3693D+00 -3.8769D+C0 =1.1557D+00

4.01570+00 -1.12830+00
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-5.5295D0-0:
5.72160-01
-7.62110-03

3.6699D0-02

.1258C-C
6.7718D-01
8.11490~-02

1.11880-01

.54186D0-01
6.0214D-01
1.08650-01

.29450-02

=5.0827D0-01
7.45590-01
2.26600-01

7.1972D-02

1

2.

-7.

8.

-5

.€7310-07 7

1213%5-0v 7.

134835-C1 -6
09380-01 -7
.66560-05 6
.6848D-02 6.
.09830-01 =7
.69080-01 -7
.86820-01 7.
.9411D-0t 7.
.72515-01 =5.
.7344D0-01 =7

.62690-02 6.

.12040-0Y 6.
.37390-0t -7.
.44%590-01 -7

.08485-02

3349D0-02

.21550~02

-30830-02

.55430-02

55610-02

.5613D~-02

. 34580-02

55400-02
35030-02

81130-02

.22375-02

2946D-02
47840-02

72280-02

.59140-02
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Table -2  Feedback gain for positions with o = 30°, p - 45°
and different valves of
b
| Y =-30°
~3.7123D+00 1.0024D+C0 1.05720+00 -5.3019D-C1 1.05260-0t 7.08970-C2
r 3.7314D+C0 1.15C6D0+30 1.06100+C0 6.3314D~01 1.37282-01 6.99600-02

9.2553D-C1 ~4.35687%+00 -9.833:D0-C1 1.0010D-01 ~-6.4103D-01 ~6.6190D0-02

5.7194D-01 3.2893D+00 =~1.10160+00 3.42350-02 7.27660-0%1 ~7.2309D0~02

2 ¢y - O°

~-3.68660+00 1.03230+00 1.0381D0+00 -5.2884D-01 1.10980-01 §&.9478D0-02
3.7028D+00 1.17660+00 1.0480D+00 6.30000-01 1.4153D-0% 6.91130-02
9.27020~-01 =4.44830+C0 ~1.01310+00 9.9182D-02 -6.52230-01 -6-86770-02

5.69050-01 4.4091D+00 =1.11800+00 3.3458D-02 7.44560-0% -7.3297D0-02

3 g = +30°

~3.6557D+C0 1.0644D+00 1.01930+400 ~5.26940-01 1.16920-01 6.81260-02
3.6706C+C0 1.20220+0C 1.03500+00 6.2642D-01 1.45770-01 6.82660-02
9.2745D-01 ~4.5415D+C0 -1.0411C+00 9.8231D-02 ~-6.63710-01 -6 .9876D~-02

5.6379D-01 4.53720+00 -1.13220+00 3.2531D-02 7.62480-01 ~7.41580-02




9.2702D0-01

5.6905D0-01 4.4091D+00 =1.11800+400 3.3458D-02 7.4456D-0% -7.32970-02
-3.0%08D+C0 =1.15240+C0 *.0507D0+00 ~5.4407D-01 =1.2512D-01 7.0484D-02
3.6138D+40C -4.728SD-C1  1.0091D+30 6.24030-01 -7.087860-02 6.66320-02
-1.2574C-21 -4.18234D+00 ~-1.16820+20 -2.1993D-02 -7.0808D-01 -7.5408D-02
1.4613D+00 4.65E68D+00 -9.91540-01 1.18710-0' 7.08420-C1 -6.7917D0-02
-3.7028D+C0 -1.1786D+C0 1.0480D+430 -6.300CD~-31 -1 .41539-01 6.91130~02
3.€8660+00 -1.032350+42C 1.038iD+20 5.28840-01 -1,10980-01 6.94780-02
~5.69050~-C1 -4.4081D4+C70 -1 [ 116CD+C0 -3.3453D-C2 ~7.4455D-01 =7.32970~-02
-9.2701D-01 4.4483D+00 -1.0131C+00 -9.9182D-02 6.5223D0-01 -6.8077D-02
-3.6238D+400 4.7528D-01 1.0084D+00 -6.23930-0% 7.11270-C2 6.66%3D0-02
3.87210400 1.1504D0+00 1.05120+00 5.4358D-01 1.,2490D-01 7.04660-02
-1.43440+00 -4.65860+00 -9.91580-0t -1,18300-01 -7.08420-0' =6.79140-02
1.39260-Ct 4.1838D+400 -1.16830+00 2.20270-02 7.0814D-01 =-7.54070~02
ST e i

~4.4483D0+00

-1.01310+00

9.91820-02 -6.5223D-01
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Table 6-3  Feedback gains for o= 30°, p=45° S
and ite Corfesponding positions in
the other 3 quadronts
I I
1
~3.6866D+00 1.0323D+00 1.03810+00 -5.28840-01 1.1098D-01 6.94780-02
3.7028D+00 1.1766D+00 1.04800+400 6.30000-01 1.4153D-01 6.91130-02

-6.8077D-02




Chapter 7. Conclusions

7.1 Summary

In this thesis, a mathematical model describing the dynamics of the tendon arm system has been
developed. From this, we obtained a reduced-order model of the system and applied the Minimum
Principle and the conjugate gradient method to obtain the time-optimal solution. [t was found that the
optimal solution is not bang-bang but that it contains singular arcs. But it was also found that these
singular arcs can be approximated very well by straight line segments, this apj.roximated control is then
utilized 1o form part of the overall control scheme.

The open-loop tendon arm system was found to be unstable, and hence to mainain the system
at any state, closed-loop feedback control is required. The feedback law was designed using the linear
regulator design procedure, lincarizing the nonlincar dynamics about the final state and the nominal
control required to keep the system there.

Ta two control schemes are combined with the first phase being open-loop time-optimal control,
bringing the system from its initial state to a waypoint in the vicinity of the final state, the second phase
then employs the closed-loop control law to bring the system to the final state and to maintain it there.

It was intended initially to implement the overall control scheme on the actual physical system, but
due to unforescen circumstances, this was not possible, instead, digital simulations of the system with the

control scheme implemented were done.

7.2 Arcas for further work

There are a few directions that we can go from here:

1. Implement the control scheme on the actual physical system — this is the most natural extension to

the present work. However, before this can be donc, there are a few problems to be Laken carc of:
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d.

b.

C.
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The control vector of our problem is formulated in terms of inpuat currents w the motors. The
drivers for the tendon arm motors, however, are voltage amplifiers, hence we have to reformu-
late and solve our problem in terms of voltage inputs. This can be casily donc however, and the
way o do itis shown in Appendix F,

The linear regulator design assumes full state feedback. For the tendon arm | we have only angle
measurcments but not velocity measurements, we need to find some means of constructing
the full state (the simplest way. of course, 1s to use backward differencing of the angles to
approximate the velocity terms),

In the simulation of the control scheme, a very coarse grid is utilized to partition the state space.
In actual implementation, a finer grid has to be used. and the problems of how many grid

points to usc and where to place them have to be considered.

2. Investigate other means of simplifying the model — the biggest disadvantage of the present control
scheme is that the third degrec-of-freedom , namely, 4, is not being controlled during the first phase
of movement, this is duc to the approach employed in simplifying the system equation. It was found
that the coupling between @ and ¢ is not very strong, thus it may be possible to simplify the system
cquations while retaining the full order dynamics.

3. The motivation of using time-optimal control initially is because of its bang-bang solution nature (s.e.
in the absence of singularity). It would be interesting to formulate the time-optimal contro! problem

as onc having a discrcte control set constraint, t.e.,

ul(t) € {01 umnx}

and find out what the form of the optimal solution is. It should also be interesting to formulate the
time-optimal problem basced on the full order model and solve it, if possible, to sce whether it is
bang- bang.

4. In our control scheme, we have utilized the measurements of the angles 8, ¢, and ¢ but not the four
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motor shafl angles. Investigate other control strategies that will take advantage of the availability of

all seven angles.
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Appendix A, Deriving the equations of motion of the system when either pair of

tendons is completely unwrapped from the arm

Duc to the way the four tendons are wrapped around the arm, at any one “ime it is possible for only
onc pair to be completely unwrapped. Hence there are three different sets of cquations describing the
motion of the system depending on the values of w + M and w’ + N (refer (o figures 2-7(a) and 2-8(a) for
the definitions of w, A, o', N, where R, is now the point at which a tangent frem Py touches the arm, all

projected onto the 27 — ¢ plane).
The three cases correspond to:

. w4 N<3nr/4andw’ + N < 37/4, both pair of tendons arc properly wrapped on the arm, this is

the normal mode of operation.

2. w4+ A>3x/4andw’ + N < 3n/4, the first pair, corresponding to tendons 1 and 2, is completely

unwrapped, whercas the second patr remains wrapped.

3 w4 N< 3r/4and ' + N > 3n/4, the first pair remains wrapped, whereas the second pair is

completely unwrapped.

The equations of motion corresponding to case 1. have been developed in Chapter 2; those of the last two

cases will be developed in this Appendix.

Al Tendons U and 2 are completely unwrapped

Whenw -+ N 2> 3x/4 where w and N are still being defined by equations {2.7) and (2.8), *endons |

and 2 arc completely unwrapped, the situation is shown in figure A-1.

‘The dircctions of Fy and F; (the (ensions in tendons 1 & 2) arc now given by Qfl’. and Q;l’z

respectively. and cquations (2.12)-(2.13). (2.17)-(2.18) arc modified to
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P2 4 \
K\ ~ X
) P
Y '
Figure A-1. Schematic diagram showing the arm and tendons 1 & 2{projected onto the ' — y'
plane) when w + A > 37/4.
1 1 !
Li=L=QP = [(a cosfsiny — —p)? + (acos@cosyp + —p)2 + (b + asinﬂ)’]
V2 V2
4
[absin0+a2+b2+p2+ V2pa cosO{cos 3 — sin ;1))] (A.1)
Ly=l =P, = [(—acosﬂsim/) + —l—p)2 + (—acosfcosyp — i—p)z + (asind — b)2]
V2 V2
i
= [—2absin0 + a2+ b2 + p* 4+ V2pacosfcos Y — sin w)] (A.2)
Equation (2.35) now becomes:
Resultant torque acting on the arm about point O
_ob. X Fi + 0@ xi*2+oha x Fy+ OR4 xi‘4+o'c X nig
X QP+ X QP OR; x R;P:
|Q|P||OQ' QP IQPIOQI Q22+|RP| 3 X R3Py
Fy
_"4_0OR, x R4P; + mgOG x GD
+ =5 TNk aPy+ mg
=T 4+ Ty + kT (A.3)

where

r

.
o e i

et e thm] eom il Al oo
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Ty = ?[—l—pasinﬂ—— abcosOcosw} + &[—l—pasina +abcosacos¢]
1 V2 Ly V2

+ Blpnsin g costein(u/ + N) — zs(cosin ¥ — sindsing cos )]
3

+ %[PS sin ¢ cos @ sin(w’ + N') + z48(cos ¢ sin ) — sindsin ¢ cos 1/))]
4

+ mgd(sin ¢ sin 3 + cos ¢ sinf cos ) (A.9)

Al . . 1 . .
Ty = —| ——pasind + abcos@siny| + — —pasmo—abcoshlntp]
: L‘[s/f ] b‘[\/i

+ ?[—PS sin ¢ cosf cos(w’ + \) — z38(cos ¢ cos ¥ + sin Osin G sin )]

3

+ % [——ps sin ¢ cos @ cos(w’ + N') + 248(cos ¢ cos ¢ 4 sin #sin Psin ¢)]
4

+ mgd(sin ¢ cos ) — cos sin @ sin ) (A5)
T; = ({—: -+ g)émcoso(cosw + sin¢)
+ (? + Lf—‘ﬂ)ps[sin¢sin0cos(k’ + u') — cos ¢ sin(N + u)] (A.8)
3 4

In cquations (A.4)~(A.6), L, and L, are as dcfined in cquations (A.1) «(A.2), the others arc dcfined as in

equations (2.19)-(2.32).

A.2  Tendons 2 and 4 are completely unwrapped

Following the same proccdure as in scction A.1, when w’ + N > 3x/4, the directions of F3 and F

will be given by Q;P, and Q,‘P., respectively, and

¥
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L= = Q;PJ = |(—scos¢pcosy — ssingsinfsin ) — ’l—p)z
V2
+ (scos¢sinyy — ssingsinfcosy + —L,o)2
V2

+ (—ssinpcosf — 1))}

=24 24 p* + V2ps cosp{cos ¢ + siny)
+ ‘/ips sin@sinf(sinyY — cos ) + 2st sind)cosﬂ]*

Ly=1y=Q;P; = |[(scos¢costy + ssinpsinfsinyy + éjp)z
2

1
+ (—scos¢siny + ssingsinfcosyp — ——p)2
V2

+ (ssingcosd — t)3)}
=2+ 2+ 02 + V2ps cos p(cos ¥ + sin )
+ V/2pssin ¢ sin 8(sin ¥ — cos yp) — 2at ain¢cosv]5

(A.T)

(A.8)

T\ il —pasinfcos{w + \) — zjacosfcos 9] + %[—~pasin0cos(w + \) + zacosfcosy)
2

= Ll
+ %[éps sin ¢ cos@ — ts(cos @sin ¢ — sin ¢ sinf cos )]

+ g[—épa sin ¢ cos @ + ts(cos psin Yy — sin $sind cos )]
-+ mgd(sin ¢ sin ¢ + cos ¢ sin 8 cos )
T, = ?[pa sin @ sin(w + N) 4 zja cosfsin ] + g[pasinhin(w -+ \) — zacosfsin ¢
1
+ %[—\—;—ipuincpcoaﬂ — ts(cos ¢ cos ¢ + sin @ sin O sin ¢))

+ {-:[\—;_;pasin¢cosﬂ + ts(cos ¢ cos ¢ + sin ¢ sin b sin )]

+ mgd(sin ¢ cos Y — cos $sin @ sin ¢)

R
L,

+ (g + g)—\;——ipa[cosct(sin ¥ — cos ) — sin ¢sin 8(cos ¥ + sin Y)]

T3 = ( -+ f—:)pacowsink

(A.9)

(A.10)

(A.11)

7
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Note: In equations (A.9(A.11), L and L, arc as defined in cquations (A.7) and (A.8), the others are as

defined in cquations (2.7)2.18).

A3 Equations of Motion

The equations of motion for the two cascs of unwrapped tendons can be derived following the proce-
dure in subscetion 2.2.4, and instead of using equations (2.36)~2.38) for the cxpressions for Ty, T, and
Ts. cquations (A.4)-(A.6) or cquations (A.9A.]11) are used depending on which pair of tendons are

unwrapped. The full detail of the equations corresponding to equation (2.48) is given in Appendix B.

¥,

U S




Appendix B. Equations of motion for the full order model

By substituting cxpressions for Ty, Ty, T; and equations (2.40)-(2.45) into equations (2.39), the three

equations become,

[JCOSVJ—{%'(H +C|2 -icu +Cn—]

ol
+¢[Jcos0smw— —5(c ll +Clla¢ + s $+C|4Zl‘£)}

+'./.)[—{2( a¢+0|z¢+cn >+ 14 1/))]

=E[Cnh+C|212+Cl313+61414]+c|5+9 '"[ +Cu +Cu P beiaat ]

+¢m n +C|2 +Cm + c14

5

+ ¢ ,,l["a¢+c‘251z +Cn + |4a¢

I [ & &, 0213 0214]

o¢

+0.2'r—r; Cuggs T Caggy tetigg + gy

+¢32[(—J+J3)sin0cosocos1p+ %( nzz; +c ugzg +e 133;; +Cl4z::;)]
I & & & A
+ ¢ [ «9¢5+ 12 w§+ nw§+ "‘01/»;]

2
+ 20.4;[(.1 - %J3)sinﬂsin1/) + ':—';‘( “2‘:;; +¢ '2;2;; + c”;;; +Cl4£;)]
+ 2¢¢[—€ cos i cosd + i—;‘(c,,oﬁ:ﬁ + m;::p + ”;Z;::p 4o, Zh A, )]

+2tl30[ Jssinyp + = (“;:::910 ::;0 :';?0-1- Mm)] (B.1)

5
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é[—Jsinw——J—"'( +cn +Cz3 +Cu—]

+ ¢[~/C080C05¢ G “6«5 +C22 P +C2J +021—)]

[ (u +zz +23(9w+024@]
.B’7] a
= —,:[62111 + ek + csly + caals) 4 cos + 00— [ 2'60 + 62269 + C23 3 4 C246;]

+<15 Br, 21 ¢+sza¢+023 +C240¢] B

+d}r [can&p+caza¢+c21 +C246¢]

oJm| A & A A
+0*= ) {6216021 T 6226022 + Cmaoj + szaw;1

+¢52[(J——J3)sin0cosﬂsinw+" (c“gz; +c 22‘3;‘% i 233':2 + 2432,2.)]

Zzlz + 22332 + 623332 + 62432‘;]

82
;;; + 2508 L + €23 &l + ¢4 Al )]

S5 805¢
a21. Pl Lo &l b 02:4)
aeop T Va0 Pagy T Moy

U, &l 83 4oy, Sl &l )] (B.2)

ndim
+ 1!’27;[621

+ 20¢[(J - 1.L.)sxn(»’comb + len

+2¢¢[ JJ005081n¢+ —Hear

0¢I99+ 21M+ 230(109 N

|
} + wo{ Jycosy + —'1'( 9
|
|
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"Jm
—_— Oﬁ{c;}lall

2 +c JZ +633 +CJ4&4}

+$[—.]_,sin0—‘6”( o P ben ¢+ 33 ¢+CJ46¢)]
J’”

al,

5 (e 6¢+Cua¢)+cna¢+mxa};)}

—[Cuh + enly + cauls + cyaly] + 6 m[ 31 = + Csz =24 CJJ 4 614

Filn—

- +45J"- u—¢+ 32 + 33 ¢+ J1a¢]

[ 61/J+C zaw+caaa¢+cangiz]

ol PPy Py O 14]

'Bnl
.
ggr Tegm +engy t gy

l. a
3|32¢l; + 32343 + asa;; +c 34&;;}

& 8 84U S, |
61!:; <9_1/J% + 6335’7)% + 0340—¢%]

&, 8, 8, )]

N ¢IJ,,.[

+ 1/12‘]"'[ + 32

&
(%é; +c sz +c ”3&% +CJ40&9¢
A, &, &y

8,
5¢K9¢+ 326¢6¢+ 3’6¢c9¢+ Jtaw¢]

. 2
+2¢0'i,2[ & +c o + a3 & + 1162[4] (B.3)

+20¢[ chos0+J (3

+ w{—';[ca.

W&M&/X%M

In the above three equations, the values of ¢;j, Ly, 4, ¢ = 1,2,3, j = 1,..., 4, will depend on the

valucs of w 4 N and w’ + N as defined by equations (2.7)-(2.8) and (2.19)-(2.22).

Forw+ \ < 3x/4,

11 = [—pasinfcos(w + N\) — zacosf cos /L,
¢)2 = |—pasinfcos{w + \) + 2,6 cosf cos )/ L,
¢21 = [pasinOsin{w + N} + zia cosfsin Y]/ L,
¢z = [pasinOsin(w 4 N) — z,a condsin y]/L,
¢31 = pacoslsinN/L,

c32 = pacosfsin\/L,
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2. Ly 1y, 23, Ly, L, are as given by cquations (2.11) «2.13) and (2.16)«2.18).

Forw + N\ > 3x/4,

oy = [—Lpasinﬂ — abcosf cos )/ L,
V2

Cly = [—l~pasin0 + abcosfcos )/ L,y
V2

€ = fipasin6’+ abcosfdsin y)/Ly
V2

Cyy = [—l~—pasin0 — abcosf@siny]/L,
V2

€3 = 1 pacosf(cosy + siny)/L,
V2

C39 = %pa cosf{cosy + siny)/Lq

L. li. La, Iy are as given by cquations (A.1) and (A.2).

Forw/' + N < 3n/4,

€13 = |pssin ¢ cos@sin(w’ + N') — z35(cos ¢ sinyp — sinfsindcos )]/ Lj
€14 = [pssin ¢ cosfsin(w’ 4 N') 4 z48(cos ¢ sin ¢ — sin@sin ¢ cos )] /Ly
¢33 = [~ pssin ¢ cos 8 cos{w’ + N') — 238(cos ¢ cos ¢ + sindsin ¢sin ¢)]/La
¢y = [—pssin @ cosf cos(w' + N') 4 z48(cos p cos ¥ + sinfsin psin )}/ Ly
¢33 = ps|sin ¢sin B cos(N + p') — cospsin(N + p')}/ L3

¢33 = ps[sin ¢sindcos(N' + p') — cos@sin(N + u')]/L4

23, L3, b3, 23, Ly, 14 arc as defined in cquations (2.25)-(2.27) and (2.30)«2.32).

Forw/ 4+ N > 3x/4,
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3 = [~l—ps sin ¢ cosd — st(cospsiny — sinfsin pcosy))/L;
V2

€14 = [Lps sin ¢ cosd + st(cos psiny — sin @ sin pcos )} /L4
V2

€3 = [~l——pssin¢cos() — st(cos @ cosy + sin@singsin ¢)]/L;
V2

€24 = [%ps sin @ cos @ + st(cos ¢ cosy + sinBsin ¢sin p)}/L,y
2

€13 = —l—ps[cos¢(sin Y — cosyp) —singsinf(cos ¢ + inyY)}/Ls
V)

€34 = —l—ps[cos @(sin Y — cos ) — sin g sinf(cosy + sin )}/ L4
V2

Ls. 13, Ly 14 are as defined in equations (A.7) and (A.8).
For all cases,

c15 = mgd(sin$siny + cosPsinf cos ¢)
¢c25 = mgd(sin ¢ cos yp — cos @ sin @ sin )

Equations (B.1)«(B.3) are of the form,
. .« .. 13 . . 4
his + hiod + bt = 0,(6,6,9,6,6,9)+ D> _ai;l;  i=1,23
J=1
where the h;;'s, and g;,'s are functions of 8, ¢, ¥.

Written in component form,

. . . . 'llﬂ

hiy hya hislfe [9(6,6,v,6,6,¥) G g2 @3 Qg
.. . . . 12

hay hyy hufle] = |900,.¢,9,0,¢6, )|+ |21 R2 R23 R
v . . . 13

hsi hyy hyjly 9:(6,0,9,0,¢,¢) @ @2 B3 B
m

Define
hiy hia hys

H=|hy hy2 hp

hsy hyx ha

(B.4)

(B.5)
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Then from equation (B.5),
. I
[/ (] a1 Q2 Q3 Q4
sl=H '||+H e @2 @ @’
W % @ @2 B3 Ba ;
I
fi by
______ I
=1H{+]| b I (B.6)
= ==y
)2 be I
Define .
=100 ¢ ¥ 0 ¢
u=[ L K Ij7 :
T 4] ‘
5
Te
Fo(z(t)) = a B-vector
()(1( )) ﬁj
5
[ 6]
[ 0]
Lo
0 .
By(z(t)) = o a6 X 4 matrix
4
bs
| b |

Then equation (B.6) can be written as

z == F()(I) + Bo(:c)u

which is cquation (2.48).




Appendices C-E have keen excluded from the Memo version of this thesis.

o e e e 4 e KA a———— st e

[ S NP IEVNUI SUPUIP TP




Appendix F. Using voltage instead of current inputs

The electrical equation of motar ¢ is given by,
dl, .
Vl:LG&E + Rl 4+ KeAi (F.1)
where L,. R. K- arc the mot sanductance, resistance and EMF constant respectively, and 4, is the
angular speed of the motor.

For the pancake type of motor that we are using,
Lo~0

and since in S 1. units, the EMF constant and the torque constant are equal, we will use the symbol K for

both of them.

Hence equation (F.1) can be written as
Vi = Rl + K-

or
1 K

I = }—ZV‘ — E’Y'i (F.2)

From equation (2.42), the dynamic equation of motor ¢ is given by,
o, + Buii + Fir = KI; (F.3)
Substituting cquation (F.2) into (F.3), wc obtain,
.. K2, . K
Jm'7g' + (Bm + —)’1.' + Fir = 4 (F4)
R R
which is of the same structure as equation (F.3) except that (B,, + K2/R) is substituted for B,,, and K /R
is substituted for K.

Hence all the equations and programs that have been developed for current inputs can be applied to

the casc of voltage inputs by changing the values of the damping constant B,,, and torque constant K of

the motor.




Appendix G. Values of the parameters used in the simulation runs

G.1 Arm Parameters

a 0:4064 m

b 0.4064m

d 0l117m

s 0202m

t  02032m

P 0.02223m

m  1581kg

J  0.0906 kg m?

B3 0.000407 kg m?

refer to figure 2-6

refer to figure 2-6

refer to figrre 2-6

refer to figure 2-6

refer to figure 2-6

radius of the cylindrical rod

mass of arm

momemt of incrtia of am about X — X and Y — Y axes

moment of inertia of arm about Z — Z axis

G.2 Motor Parameters (PMI motor type U12M4)

r 00l6m
K 011Nm/A
Jm 000016 kgm?

radius of motor shaft
torque constant

moment of inertia of motor shaft

Bm  0.000135N m/rad s—! damping constant

The rated custent of the motor is 4.4 A.







